

Highly Flexible Coupling with Progressive Torsional Deflection Characteristic

www.reich-kupplungen.com

D2C - Designed to Customer

The guiding principle of Designed to Customer is the recipe for success behind REICH. In addition to the catalogue products, we supply our customers with couplings developed to their specific requirements. The designs are mainly based on modular components to provide effective and efficient customer solutions. The special nature of our close cooperation with our partners ranges from; consulting, development, design, manufacture and integration to existing environments, to customer-specific production, logistics concepts and after-sales service - worldwide.

This customer-oriented concept applies to both standard products and production in small batch sizes.

The company policy at REICH embraces, first and foremost, principles such as customer satisfaction, flexibility, quality, prompt delivery and adaptability to the requirements of our customers.

REICH supplies not only a coupling, but a solution: Designed to Customer - SIMPLY POWERFUL.

Coupling Information

04 General Technical Description

05 Advantages

06 General Technical Data

07 Materials

08 Selection of the Coupling Size

09 Service Factors

11 Mounting for Rubber Elements

Dimension Tables

10 Type MCF...W and MCF...F

General Technical Description

MULTI CROSS FORTE

Highly Flexible Coupling with Progressive Torsional Deflection Characteristic

The MULTI CROSS FORTE (short form: MCF) is a highly flexible coupling with progressive torsional stiffness. The special characteristic of all MULTI CROSS FORTE couplings is the use of individual transmission elements, which are alike within the same type series, but vary in number depending on the coupling size.

This means that only three sizes of coupling elements are required to cover the entire MULTI CROSS FORTE coupling program with a torque range from 160 Nm to 54 000 Nm. The result is a really simple and therefore cost-effective spare parts inventory. Because of the use of the form-fit bolted elements they can be easily be assembled or disassembled – even with the biggest MULTI CROSS FORTE couplings.

The element bolting principle offers universal combinability, allowing the connection of parts directly to other mechanical parts that have the same connection dimensions.

Nominal torques from 160 Nm to 54 000 Nm

MULTI CROSS FORTE

Advantages

Salient features and advantages of the MULTI CROSS FORTE coupling:

- Very high torsional flexibility with a progressive torsional characteristic line
- High compensation capability of axial, radial and angular displacement
- Backlash-free torque transmission even in case of alternating directions of rotation
- → High torsional vibration and shock load absorbing capability
- Good heat dissipation which may be generated by the damping effect of the coupling
- Easy alignment of the coupling
- Positive fit between transmission element and hub flange to prevent relative movement
- Cost-effective spare parts inventory by use of the same element size within one series type

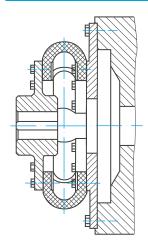
General Technical Data

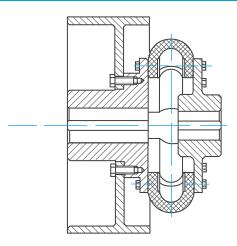
Standard Type													
Coupl	ing size	Nominal torque	Maximum torque	Continuous fatigue torque	ı	Dynamic tors C _T	ional stiffnes dyn	s	Stat. Torsional angle φ at	Rel. damping	Max. speed	Axial misalign- ment	Radial misalign ment
		T _{KN}	T _{K max}	T _{KW (10 Hz)}	0,25 T _{KN}	0,50 T _{KN}	0,75 T _{KN}	1,00 T _{KN}	T _{KN}	Ψ	n _{max}		
		[Nm]	[Nm]	[Nm]	[Nm/rad]	[Nm/rad]	[Nm/rad]	[Nm/rad]	-	-	[min ⁻¹]		
	MCF 53	160	480	53	290	500	650	1100	40°	1.2	4500		3
2	MCF 54	250	750	83	380	670	875	1500	40°	1.2	4500	±4	
Type series	MCF 55	500	1500	165	720	1270	1650	2800	30°	1.2	3800		
	MCF 56	630	1890	210	900	1600	2100	3600	28°	1.2	3700		
	MCF 58	1100	3300	365	1650	2900	3750	6400	22°	1.2	3000		
	MCF 510	1600	4800	500	2360	4160	5 410	9300	20°	1.2	2800	_	
	MCF 65	2500	7500	900	6600	9 0 0 0	11500	13700	35°	1.2	2300		
es 6	MCF 66	4000	12 000	1400	11 000	14500	18 400	22000	27°	1.2	1900		
Type series 6	MCF 68	6300	18900	2200	17 000	23 400	29700	35500	22°	1.2	1700	±8	5
Туре	MCF 69	7600	22800	2600	20100	27600	35 000	42 000	21°	1.2	1600		
	MCF 610	10 000	30000	3400	26800	36700	46600	55700	18°	1.2	1500		
	MCF 75	14 000	42 000	4700	35000	58 000	75700	119 000	24°	1.2	1350		
Type series 7	MCF 76	20 000	60 000	7000	50 000	83 000	108 000	170 000	21°	1.2	1200	±10	40
s ad/	MCF 78	35 000	105 000	12 000	86700	144 000	187 000	294000	16°	1.2	1000	±12	10
Ę	MCF 710	54000	162 000	18 000	134 000	223 000	290 000	457000	13°	1.2	900		

Technical Note

The technical data applies only to the complete coupling or the corresponding coupling elements. It is the customer's/user's responsibility to ensure there are no inadmissible loads acting on any of the components. In particular, existing connections, e.g. bolted connections, must be checked with regard to the torques to be transmitted. If necessary, further measures, such as additional reinforcement with pins, may be necessary. It is the customer's/ user's responsibility to make sure the dimensioning of the shaft and keyed or other connection, e.g. shrinking or clamping connection,

is correct. All components that can rust are protected against corrosion as standard.


REICH have an extensive range of couplings and coupling systems to cover nearly every drive configuration. Customized solutions can be developed and manufactured even in small batches or as prototypes. In addition calculation programs are available for all necessary dimensioning.


Overview of materials in standard versions

Part No.	Designation	Materials
1	Coupling hubs	Sizes 53 - 66: Grey cast iron GG25 Sizes 68 - 710: Steel (yield strength min. 360 MPa)
2	Rubber elements	Natural/synthetic caoutchouc NR-SBR 60-65 °Shore A with cord reinforcements Permitted application temperature up to 80 °C

Examples of other types

Flange coupling MCF...F2

Brake drum coupling MCF...BT

Brake disc coupling MCF...BS

Selection of the Coupling Size

The coupling size should be selected to ensure that the permissible coupling load is not exceeded in any operating condition encountered. For drives which are not subject to periodically recurring fatigue torques the coupling design may be selected based on the driving torque with reference to the corresponding service factors. Otherwise the selection shall be verified by means of a full torsional vibration analysis, which will be conducted by us on request.

In selecting the coupling size the following should be satisfied:

- The **nominal torque of the coupling T_{KN}** must be taken into account at every temperature and operating load of the coupling, whilst observing the service factors S (e.g. temperature factor S_t) shall be at least equal to the maximum nominal torque on the drive side T_{AN}; the temperature in the immediate vicinity of the coupling must be taken into account.
- $T_{KN} \ge T_{AN} \cdot S_m \cdot S_t \cdot S_z$
- 🙃 The **nominal torque on the drive side T_{AN} is** calculated with the driving power P_{AN} and the coupling speed n_{AN} .
- $T_{AN} [Nm] = 9550 \frac{P_{AN} [kW]}{n_{AN} [min^{-1}]}$
- 🙃 The maximum torque capacity of the coupling, T_{K max} must be at least equal to the highest torque $T_{\mbox{\scriptsize max}}$ encountered in operation while taking the temperature factor S₊ and the start-up factor S₇ into account.
- $T_{K \max} \ge T_{\max} \cdot S_z \cdot S_t$
- A continuous torsional vibration analysis to verify the coupling selection should confirm that the permissible continuous fatigue $torque T_{KW}$ is at least equal to the highest fatigue torque T_{W} under reversing stresses encountered throughout the operating speed range while taking into account the temperature and frequency.
- $T_{KW (10 Hz)} \ge T_W \cdot S_t \cdot S_f$
- ☐ The **frequency factor S_f** allows for the frequency dependence of the permissible continuous fatigue torque under reversing stresses T_{KW} (10 Hz) with an operating frequency f_x .

1.5

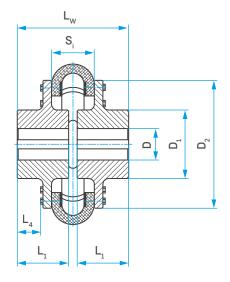
Service Factors

Combustion engines ≥ 4 cylinder

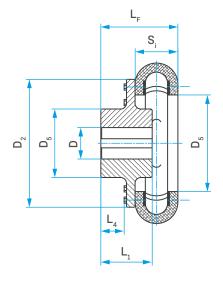
Degree of uniformity ≥ 1:100

Load classification S _m											
Prime mover	Load classification of the driven machine										
	G (uniform load)	M (medium load)	S (heavy load)	E (Extreme load)							
Electric motors, turbines, hydraulic motors	1.25	1.6	2.0	2.8							

2.0

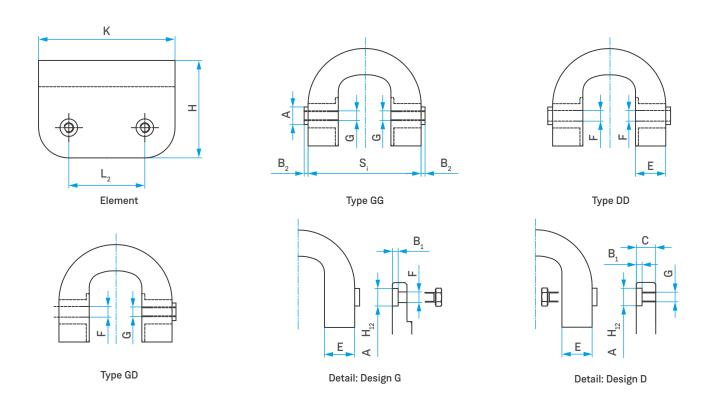

Temperature factor S _t										
Ambient temperature	-40 °C +30 °C	+40 °C	+60 °C	+80 °C	>+80 °C					
S _t	1.0	1.1	1.4	1.8	on request					


Start-up factor S _z										
Starting frequency per hour	30	60	120	240	> 240					
S _z	1.0	1.1	1.2	1.3	on request					


3.5

2.5

Type MCF...W and MCF...F


MULTI CROSS FORTE shaft coupling MCF...W

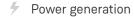
MULTI CROSS FORTE-flange coupling MCF...F

Coupling d	letails																
														МС	FW	М	FF
Coupling size	D _A)	D ₁	D ₂	D ₅	D ₆	α°	L ₁	L ₄	L _W	L _F	S _i	m _{ges} 1)	J _{ges} 1)	m _{ges} 1)	J _{ges} 1)
	[mm]	min. [mm]	max. [mm]	[mm]	[mm]	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[kgm ²]	[kg]	[kgm ²]
MCF 53	190		50	80	120	62	100	120	50	21	155	115	75	4.1	0.0085	2.5	0.0055
MCF 54	190	ъ	50	80	120	62	100	90	50	21	155	115	75	4.4	0.009	2.8	0.0064
MCF 55	230	ıtere	65	105	163	108	143	72	72	23	159	117	75	9.9	0.032	5.7	0.021
MCF 56	238	unbored, precentered	70	112	172	114	150	60	80	31	175	125	75	11.8	0.043	6.8	0.028
MCF 58	290	id 'pe	75	120	224	168	203	45	90	41	195	135	75	17.8	0.101	10.1	0.065
MCF 510	320	nbor	80	130	254	200	234	36	100	53	219	147	75	24.2	0.17	13.6	0.108
MCF 65	390	5	90	144	270	164	240	72	110	38	246	181	116	35.5	0.31	21.5	0.21
MCF 66	462		100	160	352	249	322	60	122	50	270	193	116	53.8	0.76	31.4	0.50
MCF 68	540	60	120	192	420	319	390	45	145	72	316	216	116	85.6	1.63	48.8	1.05
MCF 69	558	60	120	192	442	340	410	40	165	85	356	236	116	97.3	2.01	55.4	1.30
MCF 610	638	75	140	224	520	422	490	36	165	93	356	236	116	130	3.67	72.7	2.32
MCF 75	675	85	155	248	454	280	404	72	180	55	386	293	200	170	4.28	107	3.11
MCF 76	750	100	175	280	530	358	480	60	195	70	416	308	200	228	7.58	141	5.45
MCF 78	892	110	190	304	675	507	625	45	222	97	470	335	200	332	17.42	202	12.42
MCF 710	1040	120	215	344	825	660	775	36	245	120	516	358	200	479	35.83	285	24.97

i 1) Values for maximum bore

Mounting for Rubber Elements

Conne	Connection dimensions												
Type series	A	B ₁	B ₂	С	E	F	G	Н	K	L ₂	M_A	Connection I	oolt for C min.
361163				min.							[Nm]	Design G	Design D
5	11	5 + 0.5	3	17	18	6.6	M6	56	69	39 ± 0.2	10	M6 x 30	M6 x 30 DIN 933
6	18	6 + 0.5	4	24	31	11.0	M10	97	140	78 ± 0.2	49	M10 x 35	M10 x 55 DIN 933
7	33	7 + 0.5	5	33	57	22.0	M20	173	230	126 ± 0.2	410	M20 x 60	M20 x 90 DIN 933


Depending on the type of element mounting or coupling design, the following element have to be distinguished:

- Type GG with thread to connect bolts from the outside (for shaft couplings)
- Type GD with clearance hole and thread one side (for flange couplings)
- Type DD with clearance hole to bolt from inside (for double flange couplings)

SIMPLY **POWERFUL.** —

Industrial solutions:

Mobile applications

Test benches

Pumps & compressors

industry

Ship & port engineering

Headquarter:

Dipl.-Ing. Herwarth Reich GmbH Vierhausstrasse 53 · 44807 Bochum

+49 234 959 16-0

😢 www.reich-kupplungen.com

Copyright ISO 16016 to be observed:

The reproduction, distribution and utilisation of this document as well as the communication of its contents to others without explicit authorisation is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design. © REICH - Dipl. - Ing. Herwarth Reich GmbH

March 2022 edition

The present MULTI CROSS FORTE catalogue edition renders parts of the previous MULTI CROSS FORTE catalogues obsolete. All dimensions in millimetres. We reserve the right to change dimensions and/or design without prior notice. Texts and illustrations, dimensional and performance data have been compiled with the utmost care. There is no guarantee, however, that the information is accurate; in particular, there is no guarantee that products will match the illustrations in terms of technology, colour, shape and configuration or that the products will correspond to the proportions of the illustrations. We also reserve the right to make changes due to printing errors or mistakes.