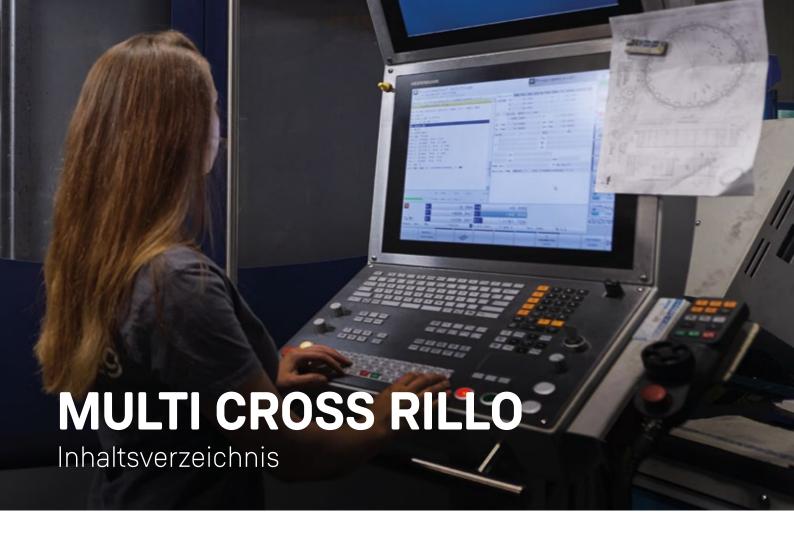


Hochelastische Reifenkupplung mit Konus-Spannbuchsen

www.reich-kupplungen.com


D2C - Designed to Customer

Der Leitgedanke Designed to Customer beschreibt das Erfolgsrezept von REICH. Neben den Katalogprodukten erhalten unsere Kunden auf ihre Anforderungen hin entwickelte Kupplungen. Dabei greifen die Konstruktionen weitgehend auf modulare Bauteile zurück, um so effektive und effiziente Kundenlösungen anzubieten. Die spezielle Form der engen Zusammenarbeit mit unseren Partnern reicht von der Beratung, Entwicklung, Auslegung, Fertigung, Integration in bestehende Umgebungen bis hin zu kundenspezifischen Produktions- und Logistikkonzepten, sowie After-Sales-Service – und das weltweit. Dieses kundenorientierte Konzept gilt sowohl für Serienprodukte als auch für Entwicklungen in kleinen Losgrößen.

Zur Unternehmensphilosophie von REICH gehören maßgeblich die Faktoren Kundenzufriedenheit, Flexibilität, Qualität, Lieferfähigkeit und Anpassungsfähigkeit auf die Bedürfnisse unserer Kunden.

REICH liefert Ihnen nicht nur eine Kupplung, sondern eine Lösung: Designed to Customer – und das SIMPLY **POWERFUL.**

Erläuterung zur Kupplung Maßtabellen

04 Allgemeine technische Beschreibung

05 Vorteile

06 Standardbauformen

08 Allgemeine technische Daten

09 Technischer Aufbau

10 Auswahl der Kupplungsgröße

12 IEC-Normmotoren - Zuordnung

13 Leistungstabelle

18 Bestellanleitung

19 Zulässiger Wellenversatz

20 Erforderliche Daten für die Auswahl der Kupplungsgröße

14 Wellenkupplung

16 Zwischenstückkupplung

Allgemeine technische Beschreibung

MULTI CROSS RILLO

Hochelastische Reifenkupplung mit Konus-Spannbuchsen

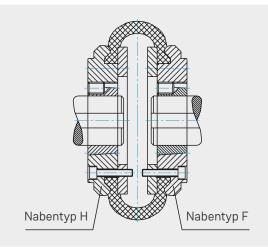
Die MULTI CROSS RILLO (Kurzform: MCR) sind hochdrehelastische Reifenkupplungen mit progressiver Verdrehkennlinie. Das besondere Merkmal der MULTI CROSS RILLO-Wellenkupplungen ist, dass die Kupplungsnaben bis zu einem Nenndrehmoment von 14675 Nm mit handelsüblichen Konus-Spannbuchsen geliefert werden. Dies ermöglicht eine leichte und zeitsparende Montage der Kupplungsnaben auf die Wellen. Spezialwerkzeuge werden nicht benötigt.

Das Übertragungselement der MULTI CROSS RILLO-Kupplungen ist ein mit Gewebeeinlagen verstärkter Gummireifen. Dieser Reifen überträgt das Drehmoment verdrehspielfrei, ist verschleißfest und wartungsfrei. Der Gummireifen ist geschlitzt und erlaubt dadurch die einfache radiale Montage ohne Axialverschiebung der gekuppelten Maschinen.

Die MULTI CROSS RILLO-Wellenkupplungen mindern in besonderem Maße Drehmomentstöße. Durch die hohe Torsionselastizität werden bei Anlagen, bei denen Drehschwingungen auftreten, die Beanspruchungen im Antriebsstrang besonders günstig beeinflusst.

Durch die Verwendung des Gummireifens als Übertragungselement werden in großem Maße Wellenverlagerungen in axialer, radialer und winkliger Richtung ausgeglichen.

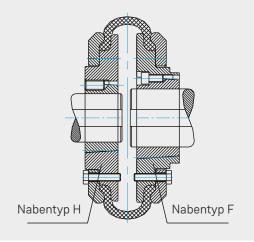
Nenndrehmomente von 24 Nm bis 14 675 Nm


MULTI CROSS RILLO

Vorteile

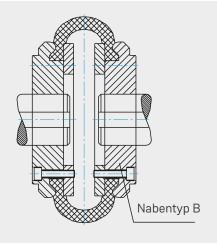
Die wichtigsten Eigenschaften und Vorteile der MULTI CROSS RILLO-Kupplung:

- Große Torsionselastizität mit progressiver Drehfederkennlinie
- Hohes Ausgleichsvermögen von axialen, radialen und winkligen Fluchtungsfehlern
- Leichte und zeitsparende Montage der Kupplungsnaben durch Verwendung von Konus-Spannbuchsen
- Radialer Wechsel des Gummielementes ohne Axialverschiebung der gekuppelten Maschinen
- → Spielfreie Drehmomentübertragung, auch bei wechselnden Drehrichtungen
- → Hohes Dämpfungsvermögen von Drehschwingungen und Laststößen
- Körperschallisolierend
- Verschleißfest und wartungsfrei


Standardbauformen

Wellenkupplungen mit Konus-Spannbuchsen

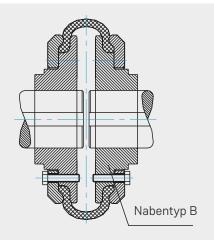
 $T_{KN} = 24 \text{ bis } 127 \text{ Nm}$


Nabentyp H: Spannbuchsenverbindung von außen Nabentyp F: Spannbuchsenverbindung von innen

Wellenkupplungen mit Konus-Spannbuchsen

 $T_{KN} = 250 \text{ bis } 11600 \text{ Nm}$

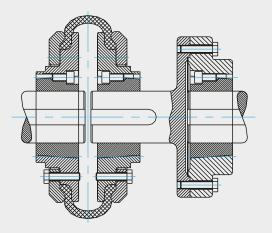
Nabentyp H: Spannbuchsenverbindung von außen Nabentyp F: Spannbuchsenverbindung von innen


Wellenkupplungen

 $T_{KN} = 24 \text{ bis } 127 \text{ Nm}$

Nabentyp B: ohne Konus-Spannbuchse

Wellenkupplungen


 $T_{KN} = 250 \text{ bis } 14675 \text{ Nm}$ Nabentyp B: ohne Konus-Spannbuchse

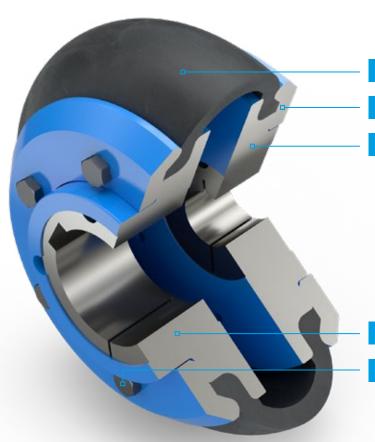
Zwischenstückkupplungen

 $T_{KN} = 24 \text{ bis } 2325 \text{ Nm}$

Die Flanschnabe ist auf Anfrage auch ohne Konus-Spannbuchse lieferbar.

Allgemeine technische Daten

Kupplungsgröße	Nenn-	Maximal-	Dauer-	Dynamische	Relative	Maximale	Zulässiger Wellenversatz ¹⁾					
77 00	drehmoment	drehmoment	wechseldreh- moment	Drehfeder- steifigkeit	Dämpfung	Drehzahl	Axial	Radial	Winklig			
	T _{KN}	T _{K max}	T _{KW (10 Hz)}	C _{T dyn}	Ψ	n _{max}	ΔK _a	ΔK _r	ΔK _w			
	[Nm]	[Nm]	[Nm]	[Nm/rad]	-	[min ⁻¹]	[mm]	[mm]	[mm]			
MCR 40	24	60	10	285	0,9	4500	1,3	1,0	5,7			
MCR 50	66	160	25	745	0,9	4500	1,7	1,3	7,0			
MCR 60	127	330	50	1500	0,9	4000	2,0	1,6	8,7			
MCR 70	250	490	100	2350	0,9	3600	2,3	1,9	10,0			
MCR 80	375	750	150	3 600	0,9	3100	2,6	2,1	12,0			
MCR 90	500	1100	200	5200	0,9	3 0 0 0	3,0	2,4	13,0			
MCR 100	675	1510	270	7200	0,9	2600	3,3	2,6	15,0			
MCR 110	875	2140	350	10 000	0,9	2300	3,7	2,9	16,0			
MCR 120	1330	3500	530	17 000	0,9	2050	4,0	3,2	18,0			
MCR 140	2325	5600	930	28 000	0,9	1800	4,6	3,7	22,0			
MCR 160	3770	9280	1500	44 500	0,9	1600	5,3	4,2	24,0			
MCR 180	6 2 7 0	16 420	2500	78 500	0,9	1500	6,0	4,8	28,0			
MCR 200	9325	23560	3700	110 000	0,9	1300	6,6	5,3	30,0			
MCR 220	11600	33300	4600	160 000	0,9	1100	7,3	5,8	33,0			
MCR 250	14 675	43 000	5800	200 000	0,9	1000	8,2	6,6	37,0			


Allgemeiner technischer Hinweis

Die angegebenen technischen Daten beziehen sich nur auf die eigentlichen Kupplungen bzw. auf die entsprechenden Kupplungselemente. Es liegt in der Verantwortung der Anwender sicherzustellen, dass keinerlei Bauteile unzulässig beansprucht werden. Insbesondere sind vorhandene Anschlüsse, wie z.B. Schraubverbindungen, hinsichtlich der zu übertragenden Momente zu überprüfen. Gegebenenfalls sind weitere Maßnahmen, wie zum Beispiel zusätzliche Verstärkung durch Stifte, notwendig. Es liegt in der Verantwortung der Anwender für die ausreichende Dimensionierung der Wellen- und Passfederverbindung und/oder

der sonstigen Verbindungen, z.B. Spann- und Klemmverbindungen, zu sorgen. Alle Bauteile, die rosten können, sind im Standard korrosionsgeschützt.

REICH hat ein sehr umfangreiches Programm an Kupplungen, aus dem für fast alle Antriebe die geeigneten Kupplungen bzw. Kupplungssysteme gewählt werden können. Weiterhin können kundenspezifische Lösungen entwickelt und auch in Kleinserien bzw. als Prototypen gefertigt werden. Daneben existieren verschiedene Berechnungsprogramme, mit denen alle notwendigen Auslegungen durchgeführt werden können.

Technischer Aufbau

- 2 Gummireifen, hochdrehelastisches, flexibles Element
- 3 Klemmring
- 4 Konus-Spannbuchse

- Kupplungsnabe, Nabe Typ F, H oder B
- 5 Befestigungsschraube
- i Die MULTI CROSS RILLO Reifenkupplungen haben keine Durchdrehsicherung

Werkstoff Übersicht

Teil-Nr.	Bezeichnung	Werkstoffe
1	Kupplungsnabe	Sphäroguss
2	Gummireifen	a) Standardversion: Naturkautschuk-Reifen b) feuerhemmend und antistatisch: Chloropren-Reifen
3	Klemmring	Stahl/Sphäroguss
4	Konus-Spannbuchse	EN-GJL-250
5	Befestigungsschraube	Güte 8.8

Auswahl der Kupplungsgröße

Die Auswahl der Kupplungsgröße muss so erfolgen, dass die zulässigen Kupplungsbelastungen in keinem Betriebszustand überschritten werden. Bei Antrieben ohne periodische Wechseldrehmomentbeanspruchung kann die Auswahl der Kupplungsgröße nach dem Antriebsdrehmoment unter Berücksichtigung des entsprechenden Betriebsfaktors erfolgen.

Für Einsatzfälle mit hohen periodischen Wechseldrehmomentbelastungen wie z. B. bei Verbrennungsmotoren, Kolbenpumpen und Kompressoren, bitten wir um Rücksprache. Bei Vorlage der entsprechenden technischen Daten wird auf Wunsch eine Drehschwingungsberechnung durchgeführt.

Für die Auswahl der Kupplungsgröße sind folgende Bedingungen zu beachten:

- Das **Nenndrehmoment der Kupplung T**_{KN} muss bei jeder Temperatur und Betriebslast der Kupplung unter Einbezug der Auslegungsfaktoren S (z.B.: Betriebsfaktor S) mindestens so groß sein wie das maximale Nenndrehmoment der Antriebsseite T_{AN}; dabei ist die Temperatur in unmittelbarer Umgebung der Kupplung zu berücksichtigen.
 - Das Nenndrehmoment der Antriebsseite T_{AN} ist mit der Antriebsleistung P_{AN} und der Drehzahl der Kupplung n_{AN} zu berechnen.

 T_{AN} [Nm] = 9550 P_{AN} [kW] n_{AN} [min⁻¹]
- Das **Maximaldrehmoment der Kupplung T_{K max}** muss bei jeder Temperatur in unmittelbarer Umgebung der Kupplung mindestens so groß sein wie das größte im Betrieb auftretende Drehmoment T_{max}.
- T_{K max} ≥ T_{max}

 $T_{KN} \ge T_{AN} \cdot S$

Zulässiger Umgebungstemperaturbereich

Bei höheren Umgebungstemperaturen bitte Rückfrage.

- 25 °C ≤ 9 ≤ + 70 °C

Nenndrehmoment T_{KN} in Nm, T_{AN} in Nm, Betriebsfaktor S gemäß nachfolgender Tabelle

Betriebsfaktor: S	Arb	Arbeitsweise der getriebenen Maschine									
Antriebsmaschine		Belastung									
	gleichmäßig	mittel	schwer								
Elektromotor, Turbine, Hydraulikmotor	1,00	1,75	2,50								
Kolbenmaschine 4 - 6 Zylinder	1,25	2,00	2,75								
Kolbenmaschine 1 - 3 Zylinder	1,50	2,25	3,00								

🚺 Der Betriebsfaktor S berücksichtigt bis zu 25 Anläufe pro Stunde. Bei bis zu 120 Anläufen pro Stunde ist der Faktor S um 0,75 zu erhöhen

Belastung gleichmäßig: Rührwerke (leichte Flüssigkeiten), Kreiselpumpen, Gebläse und Lüfter (T≤100 Nm), Bandförderer, Wasserschnecken, Abfüllmaschinen, leichte Zentrifugen.

Belastung mittel: Rührwerke (zähe Flüssigkeiten), Baumaschinen, Gebläse und Lüfter (T ≤ 1000 Nm), Mischer, Förderer, Hobelmaschinen, Kunststoffmaschinen, Textilmaschinen, schwere Zentrifugen.

Belastung schwer: Gebläse und Lüfter (T ≥ 1000 Nm), Fahrwerke, Hobelmaschinen, Blechscheren, Blechstraßen, Papiermaschinen, Gurtbandförderer, Generatoren, Frequenzumformer, Pressen.

Auslegungsbeispiel:

Gesucht: Eine MULTI CROSS RILLO-Wellenkupplung für den Antrieb einer Hobelmaschine, angeordnet zwischen Elektromotor und Getriebe.

Elektromotor $P_M = 75 \text{ kW}$, Drehzahl $n_M = 1485 \text{ min}^{-1}$

Leistungsbedarf der Hobelmaschine $P_{AN} = 60 \text{ kW}$

bis zu 60 Anläufe je Stunde

Umgebungstemperatur 25 °C

Lösung: Die MULTI CROSS RILLO - Kupplung ist für die Leistung $P_{AN} = 60 \text{ kW}$ und mit einem Betriebsfaktor von S = 2,5 (1,75 gemäß Tabelle zusätzlich 0,75 für Anlaufhäufigkeit größer 25) auszulegen.

$$T_{AN} = 9550 \frac{60 \text{ kW}}{1485 \text{ min}^{-1}} = 385 \text{ Nm}$$

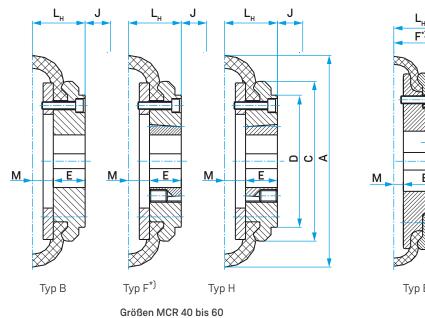
$$T_{KN} \ge T_{AN}$$
 · S
 $T_{KN} \ge 385 \text{ Nm}$ · 2,5 = 965 Nm

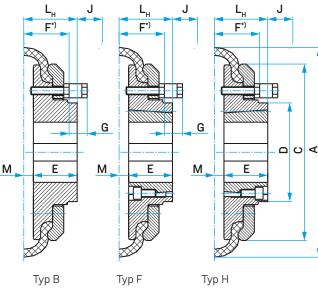
Es ist die MULTI CROSS RILLO-Wellenkupplung MCR 120 FF mit T_{KN} = 1350 Nm zu wählen

IEC-Normmotoren - Zuordnung

Wellenkupplung für IEC-Normmotoren mit Käfigläufer nach DIN 42637/1

Die Zuordnung berücksichtigt übliche Belastungsfälle, Betriebsfaktor S = 1,75. Bei anderen Belastungsfällen ist eine Auslegung gemäß "Auswahl der Kupplungsgröße" erforderlich. Bei Maschinenanlagen mit vorherrschend periodischer Anregung muss eine Auslegung nach DIN 740 Teil 2 erfolgen bzw. eine Schwingungsberechnung durchgeführt werden. Diese können wir für Sie durchführen.


Motor Baugröße		eistung 00 min ⁻¹	Kupplung Größe		eistung 00 min ⁻¹	Kupplung Größe		eistung 00 min ⁻¹	Kupplung Größe		eistung 50 min ⁻¹	Kupplung Größe		llenende [mm]
	Leistung P [kW]	Moment T [Nm]	MCR	3000 [min ⁻¹]	≤ 1500 [min ⁻¹]									
56	0,09	0,29	40	0,06	0,38	40	-	-	-	-	-	-	0 \	20
	0,12	0,38	40	0,09	0,57	40	-	-	-	-	-	-	3 /	. 20
63	0,18	0,57	40	0,12	0,76	40	-	-	-	-	-	-	11 :	x 23
	0,25	0,80	40	0,18	1,1	40	-	-	-	-	-	-		
71	0,37	1,2	40	0,25	1,6	40	-	-	-	-	-	-	14 :	x 30
	0,55 0,75	1,8 2,4	40	0,37 0,55	2,4 3,5	40	0,37	3,5	40	-	_	-		
80	1,1	3,5	40	0,35	4,8	40	0,55	5,3	40	-	_	_	19	x 40
90 S	1,5	4,8	50	1,1	7,0	50	0,75	7,2	50	-	-	-	24	x 50
90 L	2,2	7,0	50	1,5	9,6	50	1,1	11,0	50	-	-	-		
100 L	3,0	9,6	50	2,2	14,0	50	1,5	14,0	50	0,75	10	50		
100 L	3,0	3,0	30	3,0	19,0	50	1,0	14,0	30	1,1	14	50	28	x 60
112 M	4,0	13,0	50	4,0	25,0	50	2,2	21,0	50	1,5	19	50	20	X 00
132 S	5,5 7,5	18,0 24,0	60 60	5,5	35,0	60	3,0	29,0	60	2,2	28	60		
132 M	-	-	-	7,5	48,0	60	4,0 5,5	38,0 53,0	60 60	3,0	38	60	38	x 80
160 M	11,0 15,0	35,0 48,0	70 70	11,0	70,0	70	7,5	72,0	70	4,0 5,5	51 70	70 70		
160 L	18,5	59,0	70	15,0	96,0	70	11,0	105,0	70	7,5	96	70	42 >	× 110
180 M	22,0	70,0	70	18,5		70	_	_	_		_	_		
					118,0					-			483	× 110
180 L	-	-	-	22,0	140,0	70	15,0	143,0	80	11,0	140	70		
200 L	30,0 37,0	96,0 118,0	80	30,0	191,0	80	18,5 22,0	177,0 210,0	80	15,0	191	80	55 :	× 110
225 S	-	-	-	37,0	236,0	90	-	-	-	18,5	236	90	== 440	
225 M	45,0	143,0	80	45,0	287,0	100	30,0	287,0	100	22,0	280	90	55 x 110	60 x 140
250 M	55,0	175,0	80	55,0	350,0	100	37,0	353,0	100	30,0	382	100	60 x 140	65 x 140
280 S	-	-	-	75,0	478,0	110	45,0	430,0	110	37,0	471	120		
280 M	-	-	-	90,0	573,0	120	55,0	525,0	120	45,0	573	120	65 x 140	75 x 140
315 S	-	-	-	110,0	700,0	120	75,0	716,0	120	55,0	700	120		
315 M	-	-	-	132,0	840,0	140	90,0	860,0	140	75,0	955	140	65 x 140	80 x 170
	-	-	-	160,0	1019,0	140	110,0	1051,0	140	90,0	1146	140		
315 L	-	-	-	200,0	1273,0	140	132,0	1261,0	140	110,0	1401	160		
							160,0	1528,0	160	132,0	1681	160		
355 L	-	-	-	250,0	1592,0	160	200,0	1910,0	160	160,0	2 0 3 7	160	75 x 140	95 x 170
				315,0	2006,0	160	250,0	2388,0	180	200,0	2547	160		
400 L	-	-	-	355,0	2260,0	180	315,0	3008,0	180	250,0	3183	180	80 x 170	100 x 200
400 L	-	-	-	400,0	2 547,0	180	515,0	3000,0	100	250,0	3103	100	00 X 1/U	100 X 200


Leistungstabelle

Kupplu	ngsda	iten														
Drehzahl	Gr.	40	50	60	70	80	90	100	110	120	140	160	180	200	220	250
min ⁻¹								Übertrag	bare Leist	ung [kW]						
100		0,28	0,87	1,58	2,59	4,06	5,16	6,83	9,09	14,2	26,7	41,8	65,4	96,8	120	154
150		0,42	13,1	2,37	3,89	6,09	7,74	10,2	13,6	21,3	40,1	62,7	98,1	145	180	23:
200		0,56	1,74	3,16	5,18	8,12	10,3	13,7	18,2	28,5	53,4	83,6	131	194	240	308
300		0,84	2,61	4,74	7,77	12,2	15,5	20,5	27,3	42,6	80,1	125	196	290	360	46
400		1,12	3,48	6,32	10,4	16,2	20,6	27,3	36,4	56,8	107	167	262	387	480	616
500		1,41	4,36	7,88	12,9	20,2	25,7	34,1	45,4	71,4	134	209	327	484	601	767
600		1,68	5,22	9,48	15,5	24,4	31,0	41,0	54,5	85,2	160	251	392	581	720	924
700		1,97	6,10	11,0	18,1	28,4	36,0	47,7	63,6	99,8	187	292	458	678	842	107
720		2,02	6,26	11,3	18,6	29,2	37,1	49,1	65,4	103	192	301	471	697	866	110
800		2,25	6,97	12,5	20,7	32,4	41,2	54,5	72,3	114	214	334	523	775	962	122
900		2,53	7,84	14,1	23,3	36,5	46,3	61,4	81,8	128	241	376	589	872	1082	138
960		2,69	8,36	15,1	24,8	38,9	49,4	65,5	87,3	137	257	401	628	929	1154	147
1000		2,81	8,71	15,7	25,9	40,6	51,5	68,2	90,9	143	267	419	655	968	1203	153
1200		3,37	10,4	18,9	31,0	48,6	61,8	81,8	109	171	321	502	785	1162		
1400		3,93	12,2	22,0	36,2	56,8	72,1	95,5	127	200	375	585	916			
1440		4,04	12,5	22,6	37,2	58,4	74,2	98,3	131	206	385	602	942			
1500		4,21	13,0	23,6	38,8	60,9	77,3	102	136	214	401	627	982			
1800		5,05	15,6	28,3	46,5	73,0	92,7	123	164	257	481					
2000		5,62	17,4	31,5	51,8	81,1	103	136	182	286						
2500		7,02	21,7	39,3	64,7	102	129	145								
2880		8,08	25,0	45,3	74,5	117	149									
3000		8,42	26,1	47,2	77,6	122	155									
3500		9,82	30,4	55,1	90,6											
4000		11,2	34,8	63,0												
4500		12,6	39,1													

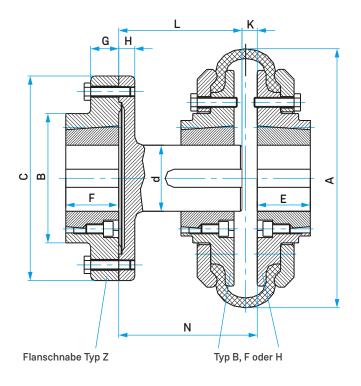
i Die angegebenen Leistungen gelten bei dem Betriebsfaktor S = 1,0, siehe Seite 10 Für andere Betriebsverhältnisse und/oder andere Leistungen kann die Auslegung gemäß Seite 10 erfolgen

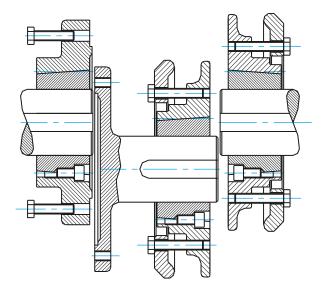
Wellenkupplung

Größen MCR 70 bis 220

*) Abmessung auf Anfrage

Kupplungsgröße	Naben- typ	Konus Spann-	Bohrung max.	A	С	D	L _H	М	Е	G ²⁾	J3)	Masse ¹⁾	Trägheits- moment ¹⁾
		buchse	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[kgm ²]
	В	-	32				33,0		22,0		-	0,9	0,001
MCR 40	F	1008	25	104	82,0	-	33,0	11,0	22,0	_	29	0,9	0,001
	Н	1008	25				33,0		22,0		29	0,9	0,001
	В	-	38				45,0		32,5		-	1,3	0,002
MCR 50	F	1210	32	133	100,0	79	37,5	12,5	25,0	_	38	1,3	0,002
	Н	1210	32				37,5		25,0		38	1,3	0,002
	В	-	45				55,0		38,5		-	2,1	0,005
MCR 60	F	1610	42	165	124,5	103	41,5	16,5	25,0	-	38	2,1	0,004
	Н	1610	42				41,5		25,0		38	2,1	0,004
	В	-	50				46,5		35,0		-	3,3	0,006
MCR 70	F	2012	50	187	142,0	80	44,5	11,5	33,0	13	42	3,3	0,005
	Н	1610	42				42,5		31,0		38	3,2	0,005
	В	-	60				55,0		42,5		-	5,2	0,021
MCR 80	F	2517	65	211	165,0	98	58,5	12,5	46,0	16	48	5,2	0,012
	Н	2012	50				45,5		33,0		42	4,8	0,014
	В	-	70				63,5		50,0	16	-	7,5	0,025
MCR 90	F	2517	65	235	187,0	108	59,5	13,5	46,0		48	7,4	0,025
	Н	2517	65				59,5		46,0		48	7,4	0,025
	В	-	80				70,5	13,5	57,0	16	-	10	0,073
MCR 100	F	3020	75	254	214,0	120	65,5		52,0		55	10	0,042
	Н	2517	65				59,5		46,0		48	10	0,047
	В	-	90		232,0		70,5	12,5	58,0	16	-	13	0,105
MCR 110	F	3020	75	279		134	64,5		52,0		55	12	0,064
	Н	3020	75				64,5		52,0		55	12	0,064
	В	-	100			143	84,5		70,0		-	18	0,163
MCR 120	F	3525	100	314	262,0	140	80,5	14,5	66,0	16	67	17	0,123
	Н	3020	75			140	66,5		52,0		55	17	0,127
	В	-	130				110,0		94,0		-	23	0,452
MCR 140	F	3525	100	359	313,0	178	82,0	16,0	66,0	17	67	23	0,373
	Н	3525	100				82,0		66,0		67	23	0,373
	В	-	140				117,0		102,0		-	38	0,737
MCR 160	F	4030	115	402	347,0	197	92,4	15,0	77,4	19	80	34	0,594
	Н	4030	115				92,4		77,4		80	34	0,594
	В	-	150				137,0		114,0		-	52	1,302
MCR 180	F	4535	125	470	396,0	205	112,0	23,0	89,0	19	89	44	1,078
	Н	4535	125				112,0		89,0		89	44	1,078
	В	-	150				138,0		114,0		-	61	1,847
MCR 200	F	4535	125	508	433,0	206	113,0	24,0	89,0	19	89	56	1,592
	Н	4535	125			113,0		89,0		89	56	1,592	
	В	-	160				154,5		127,0		-	84	2,829
MCR 220	F	5040	125	562	472,0	224	129,5	27,5	102,0	20	92	76	2,431
	Н	5040	125				129,5		102,0		92	76	2,431
	В	-	190				160,5		132,0		-	110	3,645
MCR 250	F	5040	125	628	532,0	254	155,5	28,5	127,0	25	-	106	3,645
	Н	5040	125				155,5		127,0		-	106	3,645




¹⁾ Masse und Trägheitsmomente für Kupplungshälfte

²⁾ G = Platzbedarf zum Lösen und Auswechseln des Reifens

³⁾ J = Platzbedarf zum Befestigen und Lösen der Buchsen und der Klemmringe

Zwischenstückkupplung

Kupplung	gsdat	en																			
Kupplungs- größe	Spa	Konus		Bohrung			A	A C D d				Е		F	L	К	K N		Masse ¹⁾	Trägheits- moment ¹⁾	
	Тур F	Тур Н	Тур Z	Тур В	Тур F	Тур Н	Тур Z					Тур В	Тур F	Тур Н	Тур Z						
				max.	max.	max.	max.									min.	min.	von	bis		
				[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]	[kgm ²]
			1010				00		00	110	٥٢				٥٢	65	6	80		2,6	0,010
MCR 40 Z ²⁾	1000	1000	1210	32	O.F.	O.F.	32	104	83	118	25	22	22	22	25	77	6	100	-	2,6	0,010
MCR 40 Z ²	1008	1008	1610	32	25	25	40	104	80	107	22	22	22	22	25	88	9	100	113	3,2	0,014
			1010				40		80	127	32				25	128	9	140	150	3,4	0,015
MCR 50 Z	1210	1210	1610	38	32	32	40	133	80	127	32	32,5	25	25	25	85	9	100	116	3,2	0,014
WICK 50 Z	1210	1210	1010	30	32	32	40	133	80	12/	32	32,3	23	23	20	125	9	140	156	3,4	0,015
MCR 60 Z	1610	1610	1610	45	42	42	40	165	80	127	32	38,5	25	25	25	78	9	100	124	3,2	0,014
WICK 00 Z	1010	1010	1010	45	42	42 40	40	100	80	12/	32	30,3	20	20	25	118	9	140	164	3,4	0,015
															80	9	100	114	7,8	0,075	
MCR 70 Z ³⁾	2012	1610	2517	50	50	42	60	187	125	180	48	35	33	31	45	120	9	140	154	8,4	0,080
																160	9	180	194	9,0	0,084
																78	9	100	117	7,8	0,075
MCR 80 Z	2517	2012	2517	60	65	50	60	211	123	178	48	42,5	46	33	45	116	9	140	158	8,4	0,080
																156	9	180	198	9,0	0,084
MCR 90 Z	2517	2517	2517	70	65	65	60	235	123	178	48	50	46	46	45	116	9	140	158	8,4	0,080
WOR OO Z	2017	2017	2017	, 0				200	120	1,0	40	00	40	40		156	9	180	198	9,0	0,084
MCR 100 Z	3020	2517	3020	80	75	65	75	254	146	216	60	57	52	46	51	116	9	140	158	14,5	0,202
WOR 100 Z	3020	2017	3020	00	7.5	00	7.5	204	140	210	00	37	52	40	01	156	9	180	198	15,4	0,212
MCR 110 Z	3020	3020	3020	90	75	75	75	279	146	216	60	58	52	52	51	116	9	140	158	14,5	0,202
WONTE	3020	3020	3020	30	7.5	7.5	7.5	275	140	210		50	52	52	- 51	156	9	180	198	15,4	0,212
MCR 120 Z	3525	3020	3525	100	100	75	90	314	178	248	80	70	66	52	63	114	9	140	160	22,2	0,331
	0020	3020	3020	100	100	, 0	00	01-7	1,0	2-10		, 0	00	52 63		154	9	180	200	23,8	0,350
MCR 140 Z	3525	3525	3525	130	100	100	90	359	178	248	80	94	66	66	63	111	9	140	163	22,2	0,331
	5520	5525	5525	130		130						5-				151	9	180	203	23,8	0,350

i Maße G und H auf Anfrage. Weitere Abmessungen siehe bei MCR-Wellenkupplungen Seite 14 – 15

¹⁾ Masse und Trägheitsmomente für Flanschnabe Typ Z und Zwischenstückwelle zusammen, ohne Kupplungshälften Typ B, F bzw. H

²⁾ MCR 40 B – Kupplungshälfte für Zwischenstückwelle erforderlich

³⁾ MCR 70 F – Kupplungshälfte für Zwischenstückwelle erforderlich

Bestellanleitung

Für eine komplette MULTI CROSS RILLO-Wellenkupplung werden folgende Teile benötigt:

- a) 2 Kupplungshälften, je bestehend aus Nabe (Typ F, H oder B), Klemmring, Befestigungsschrauben
- b) 1 Gummireifen
- c) bei Nabentyp F und/oder H: jeweils Angabe der Konus-Spannbuchse mit Bohrung, z. B. Buchse 3020 mit Bohrungs-Ø 65, entsprechende Bezeichnung: 3020.65 bei Nabentyp B nur Angabe der Bohrung

■ Bestellbeispiel MULTI CROSS RILLO-Wellenkupplung, Größe MCR 100 FH bestehend aus:

- 1x Kupplungshälfte MCR 100 F (Nabe, Klemmring und Satz Befestigungsschrauben)
- 1x Kupplungshälfte MCR 100 H (Nabe, Klemmring und Satz Befestigungsschrauben)
- 1x Gummireifen MCR 100
- 1x Konus-Spannbuchse 3020.65 (Passfedernut gemäß DIN 6885/1)
- 1x Konus-Spannbuchse 2517.48 (Passfedernut gemäß DIN 6885/1)

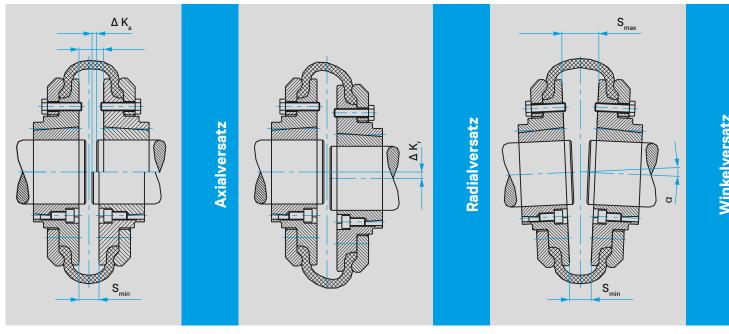
Für eine komplette MULTI CROSS RILLO-Zwischenstückkupplung werden folgende Teile benötigt:

- a) 2 Kupplungshälften, je bestehend aus Nabe (Typ F, H oder B), Klemmring, Befestigungsschrauben
- b) 1 Gummireifen
- c) bei Nabentyp F und/oder H: jeweils Angabe der Konus-Spannbuchse mit Bohrung, z. B. Buchse 2517 mit Bohrungs-Ø 48, entsprechende Bezeichnung: 2517.48 bei Nabentyp B nur Angabe der Bohrung
- d) Flanschnabe mit Angabe der Konusspannbuchse und des Durchmessers der Motorwelle, Zwischenstück (mit Angabe der gewünschten Ausbaulänge L, siehe Seite 14 – 15) und Befestigungsschrauben.
 Die Flanschnabe ist auf Anfrage auch ohne Konus-Spannbuchse mit zylindrischer Bohrung lieferbar.

■ Bestellbeispiel MULTI CROSS RILLO-Zwischenstückkupplung Größe MCR 90 FF Z bestehend aus:

- 2x Kupplungshälften MCR 90 F (Nabe, Klemmring und Satz Befestigungsschrauben)
- 1x Gummireifen MCR 90
- 1x Spannbuchse 2517.48 (Passfedernut gemäß DIN 6885/1), Maß d, siehe Seite 16
- 1x Spannbuchse 2517.48 (Passfedernut gemäß DIN 6885/1), für Pumpenwelle
- 1x Zwischenwelle mit L = 116 mm
- 1x Flanschnabe MCR 90 Z
- 1x Spannbuchse 2517.55 (Passfedernut gemäß DIN 6885/1)

Lieferbare Konus-Spannbuchsen

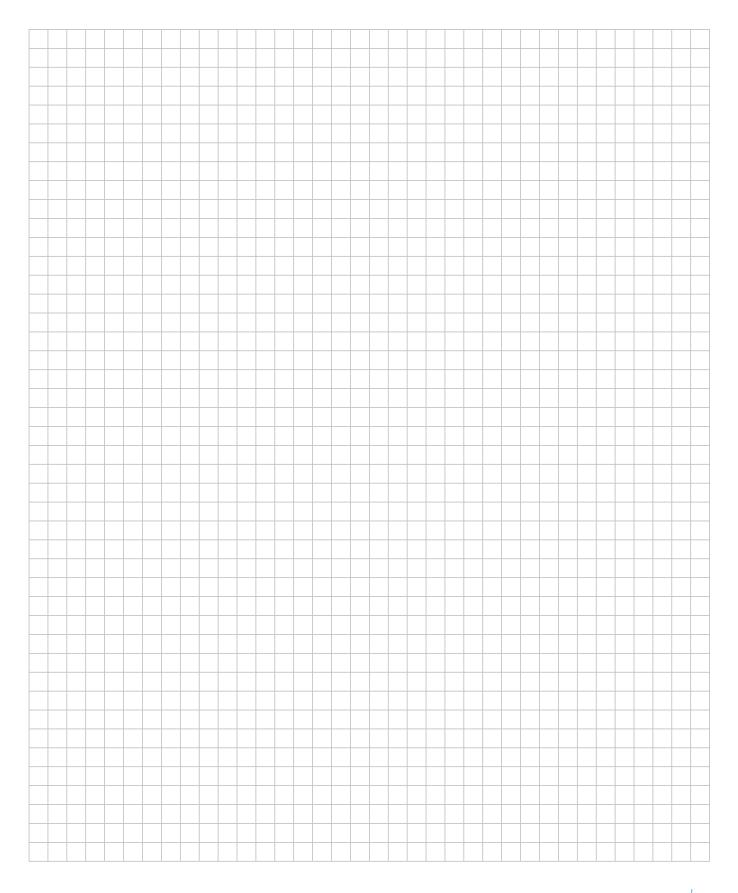

Mit den Konus-Spannbuchsen werden die MULTI CROSS RILLO-Kupplungen schrumpfsitzartig auf den Wellen befestigt. Die aufgeführten Spannbuchsen sind ab Lager verfügbar. Ebenso sind Konus-Spannbuchsen mit zölliger Bohrung lieferbar.

TB-Nr.	D = Me	trische l	Bohrung	en mit Pa	assfeder	nut nach	DIN 68	85/1											
1008	9	10	11	12	14	16	18	19	20	22	-	-	-	-	-	-	-	-	-
1210	11	12	14	16	18	19	20	22	24	25	28	30	32	-	-	-	-	-	-
1610	14	16	18	19	20	22	24	25	28	30	32	35	38	40	42	-	-	-	-
2012	14	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	-
2517	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60
3020	25	28	30	32	35	38	40	42	45	48	50	55	60	65	70	75	-	-	-
3525	35	38	40	42	45	48	50	55	60	65	70	75	80	85	90	-	-	-	-
4030	40	42	45	48	50	55	60	65	70	75	80	85	90	95	100	-	-	-	-
4535	55	60	65	70	75	80	85	90	95	100	105	110	-	-	-	-	-	-	-
5040	70	75	80	85	90	95	100	105	110	115	120	125	-	_	_	_	-	_	_

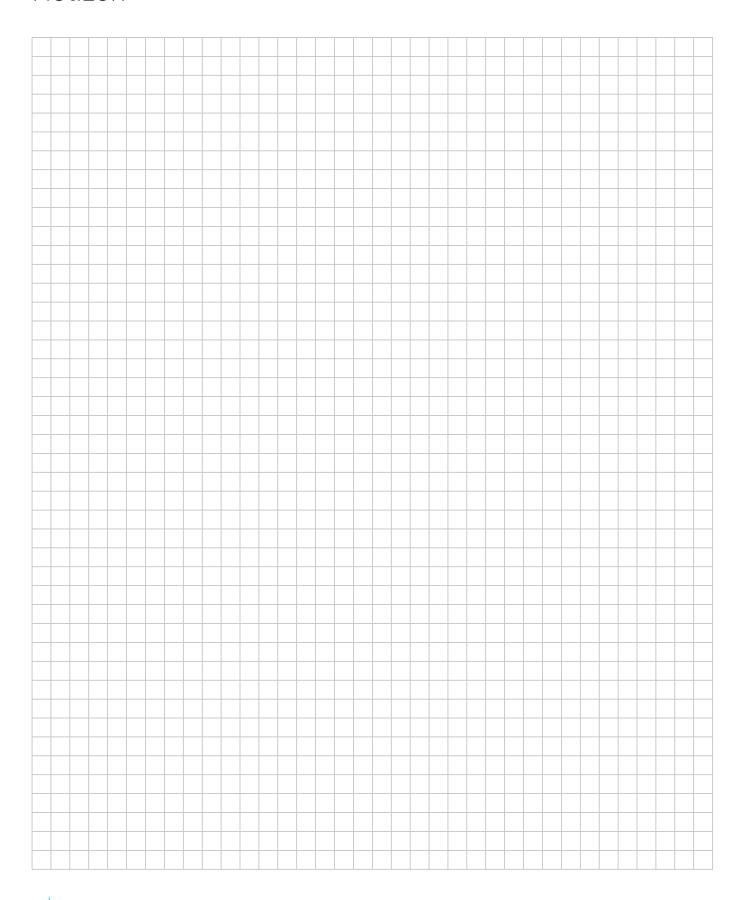
Zulässiger Wellenversatz

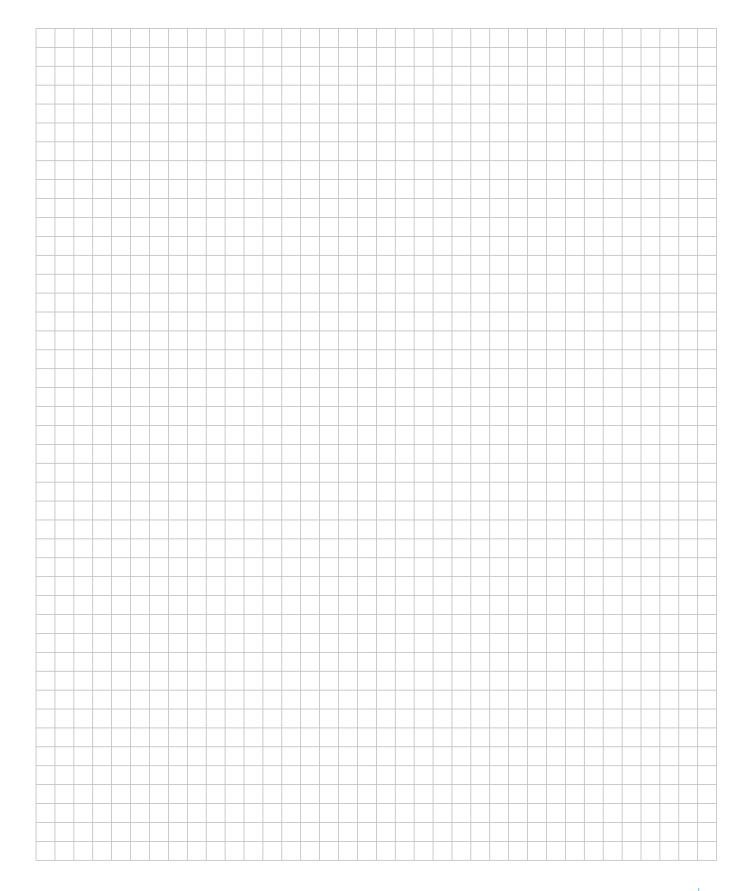
Die angegebenen Werte für Δ K $_{\rm w}$ [mm] = S $_{\rm max}$ - S $_{\rm min}$ (siehe S. 8) entsprechen einem winkligen Versatz von Δ K_w = 4°. Dieser zulässige winklige Wellenversatz ist die größte winklige Verlagerung der Kupplungshälften, die nur dann ausgenutzt werden darf, wenn keine axialen und radialen Verlagerungen vorhanden sind. Es ist ein winkliger Versatz von Δ K $_{\rm W}$ = 2° zulässig, wenn axiale und radiale Verlagerungen von ½ Δ K_a und ½ Δ K_r vorhanden sind.

Beachten Sie die Betriebsanleitung.



 Δ K_a, Δ K_r, Δ K_w siehe Allgemeine technische Daten Seite 8


Erforderliche Daten für die Auswahl der Kupplungsgröße


Von (Stempel):	Ansprechpartner: Abteilung: Telefon: Fax:
DiplIng. Herwarth Reich GmbH Vierhausstraße 53 44807 Bochum	Antriebsseite: Antriebsmaschine: Diesel- / Hydraulik- / E-Motor Sonstiges:
Anfrage Bestellung Allgemeine Anlagedaten: Einsatzort/Umweltbedingungen: Belastung: gleichmäßig mittel schwer Umgebungstemperatur an der Kupplung: [°C] Tägliche Betriebsdauer: Stunden/Tag Anlaufhäufigkeit: pro Tag Wellenversatz:	Abtriebsseite: Arbeitsmaschine: Nennleistung: max. Lastdrehmoment: falls ungleichmäßige Drehmomentbelastung: von bis [Nm] Wuchten: ja nein Wuchtdrehzahl: [min-1] / Güte: G Wuchten mit Nut: ja nein Bemerkungen:
Δ K _a : [mm] / Δ K _r : [mm] / Δ K _w : [°] Wellenabmessungen:	
Weitere Vorgaben zur Kupplungsauführung (z.B. mit Bremstrommel/ Weitere Angaben zur Gesamtanlage / Prinzipskizze zur Einbausituat	

Notizen

Notizen

SIMPLY POWERFUL. —

Branchenlösungen:

Industrie

Stammhaus:

Dipl.-Ing. Herwarth Reich GmbH Vierhausstraße 53 · 44807 Bochum

+49 234 959 16 - 0

🔞 www.reich-kupplungen.com

Schutzvermerk ISO 16016 beachten:

Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmuster- oder Geschmacksmustereintragung vorbehalten. © REICH - Dipl.- Ing. Herwarth Reich GmbH

Ausgabe März 2022

Mit dem Erscheinen dieses MULTI CROSS RILLO-Kataloges verlieren vorhergehende MULTI CROSS RILLO-Unterlagen teilweise ihre Gültigkeit. Alle Maßangaben in Millimeter. Maß- und Konstruktionsänderungen vorbehalten. Texte und Abbildungen, Maß- und Leistungsangaben sind mit größter Sorgfalt zusammengestellt worden. Eine Gewähr für die Richtigkeit kann jedoch nicht übernommen werden, insbesondere wird nicht garantiert, dass Produkte in Technologie, Farbe, Form und Ausstattung mit den Abbildungen übereinstimmen oder die Produkte den Größenverhältnissen der Abbildungen entsprechen. Ebenso sind Änderungen aufgrund von Druckfehlern oder Irrtümer vorbehalten.